EMC FLEX BLOG A site dedicated to Automotive EMC Testing for Electronic Modules

CISPR 25 Conducted Emissions Current (CEI) Grounding Scheme

An incorrect DUT grounding scheme can easily make the difference between compliance and non-complian

An incorrect DUT grounding scheme can easily make the difference between compliance and non-compliance to CISPR 25 CEI limits. Sometimes we have to evaluate CEI from two modules, one used as DUT and the other one used as DUT's load (e.g. Module #1 is a PWM maker while Module #2 is an LEDs Lamp).

 

Christian Rosu, 2021-06-09

CISPR25 Conduct Emissions Current Grounding Scheme

A few remarks on correct Load Simulator configuration for CISPR 25 Conducted Emissions Current test

A few remarks on correct Load Simulator configuration for CISPR 25 Conducted Emissions Current test method.

First of all you have to show the LISN in your EMC Test Plan block diagrams. The way the LS is connected is not identical for each CISPR 25 test method. I will never use a Load Simulator unless is no other way around or I would want to turn it into a RF filter box. Examples of CEI good and bad setups are shown below:

CEI WRONG CONFIGURATION

 

CEI GOOD CONFIGURATION

To clarify how a PWM maker is connected:

From EMC compliance perspective the goal is to avoid as much as possible common line impedances:

 

Christian Rosu

2021-04-13

Common Impedance Coupling, Common Power Supply

15. December 2020 17:01 by Christian in Grounding, Noise Coupling, Troubleshooting
When two circuits share a common ground, the ground voltage of each one is affected by the ground cu

See Ground Return & Common Impedance Coupling

When two circuits share a common ground, the ground voltage of each one is affected by the ground current of the other circuit.

When two circuits share a common power supply, current drawn by one circuit affects the voltage at the other circuit.

 

Differential Mode Current vs Common Mode Current (Transmission Lines)

15. December 2020 12:14 by Christian in EMC/EMI, Noise Coupling, Troubleshooting
Differential Mode Configuration Assuming 1A is propagated from the source to the load usin

See Ground Return & Common Impedance Coupling

Differential Mode Configuration

Assuming 1A is propagated from the source to the load using I1 to represent the current flow. The 1A current must return to the source represented by I2. If I1 = I2 then we have a perfectly balanced transmission line system, no loss in the network.
The EM filed that exists in the outgoing path will couple inductively to the RF return path (AC transmission while DC will always travel in the lowest rsistance path I2). Magnetic flux between these two transmission lines will cancel each other out, being of equal value and opposite in dirrection. Assuming that the spacing between opposite conductors is very small, there should be no radiated emissions. Differential-mode radiation is caused by the flow of RF current loops within a system 's structure.
Common Mode Configuration
Assuming tht 50% of the transmitted current is consumed within the load, it leaves 50% of current that must be returned to its source.  The Kirchhoff's Law states that the sum of all currents withinn a transmission line must equal zero.We have 50% loss. 
I'2 represents the a virtual return path through free space or metallic interconnect. Not all desired return current will flow in I2 due to inductance or loss in transmission line. The remaining of the desired return current will flow in I'2. A negative current flow will exist in I2, travelling in opposite direction to satisfy Ampere's Law. The undesired (negative) current flow in I2 is that portion that contributes to common-mode currents.
Common mode radiation results from unintentional voltage drops caused by a circuit rising above the 0V reference.
Cables connected to the affected reference system will act as dipole antenna when stimulated with a voltage source.
The only solution to resolve CM radiation is reducing the common path impedance for  the return current.
 
 
 
The total magnitude of imbalance in a DM transmission line system becomes the the total magnitude of CM current.
RF loss within a system or transmission line will result in CM energy, and this CM current is the reason for EMI problems.
 

Capacitive Coupling vs Inductive Coupling

13. December 2020 19:29 by Christian in EMC/EMI, Noise Coupling, Troubleshooting
Electromagnetic fields and how they propagate and couple together. Conductive coupling is usually lo

How Electromagnetic Fields are propagated and coupled together.

Conductive coupling is usually low frequency noise traveling along a pair of wires due to a common resistive path, which form a loop. Breaking the connection stops the interference (“ground loops”).

Radiated coupling represent EM waves propagating through space from one point to another, whose coupling factor reduces by a factor of 1/r.

Inductive and Capacitive couplig refers to near field effects, which are reduced rapidly with separation (near field terms of 1/r^2 and 1/r^3). 

Inductive coupling requires two "loops" coupled together, with the field of the one inducing noise into the other (think transformer).

Example: one cable inducing noise into an adjacent cable.

Inductive coupling is a high di/dt phenomenon.

Capacitive coupling requires two “plates” with the noisy plate inducing a voltage change in the other due to dispersion effects (think capacitor).

Example: heat sink from a switched mode power supply inducing voltage changes in a nearby cable or chassis.

Capacitive coupling is generally a high dv/dt phenomenon.