

Baltimore Division 2101 Van Deman Street • Baltimore, MD 21224 Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

COVER LETTER

Ben Cotts Exponent 4901 Telsa Drvie Suite L Bowie, MD 20715 RE: General Analysis April 23, 2013 Report No.: 13D1376

The report of analyses contains test results for samples received at Microbac Laboratories, Inc., Baltimore Division on 04/17/2013 12:20.

The enclosed results were obtained from and applicable to the sample(s) as received at the laboratory. All sample results are reported on an "as received" basis unless otherwise noted.

All data included in this report has been reviewed and meet the applicable project and certification specific requirements, unless otherwise noted.

This report has been paginated in its entirety and shall not be reproduced except in full, without the written approval of Microbac Laboratories, Inc.

We appreciate the opportunity to service your analytical needs. If you have any questions, please feel free to contact us.

This Data Package contains the following:

- This Cover Page
- Sample Summary
- Test Results
- Certifications/Notes and Definitions
- Cooler Receipt Log
- Chain of Custody

4/23/2013

Report issue date

Final report reviewed by:

Mark B. Horan/Laboratory Director

All samples received in proper condition and results conform to ISO 17025 and TNI NELAC standards unless otherwise noted.

If we have not met or exceeded your expectations, please contact Mark Horan, Managing Director, at 410-633-1800 You may also contact Sean Hyde, Chief Operating Officer at <u>sean.hyde@microbac.com</u> or James Nokes, President <u>james.nokes@microbac.com</u>

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Exponent	Project: General Analysis	Report:	13D1376
4901 Telsa Drvie Suite L	Project Number: FPRF Response, 1205174.000	Reported:	04/23/2013 13:38
Bowie, MD 20715	Project Manager: Ben Cotts		

SAMPLE SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
Control Water Sample	13D1376-01	Water	Not Specified	03/27/2013 15:00	04/17/2013 12:20

Microbac Laboratories, Inc., Baltimore Division

Mark B. Horan, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Exponent	Project: General Analysis	Report: 13D1376
4901 Telsa Drvie Suite L	Project Number: FPRF Response, 1205174.000	Reported: 04/23/2013 13:38
Bowie, MD 20715	Project Manager: Ben Cotts	

Control Water Sample

13D1376-01 (Wa	ater) Sampled:	03/27/2013 15:00;	Type: Not Specified
----------------	----------------	-------------------	---------------------

		Reporting								
Analyte	Result	Limit	Units	Prepared	Analyzed	Analyst	Method	Notes		
Microbac Laboratories, Inc., Baltimore Division Wet Chemistry										
Conductivity	190	10	umhos/cm	042213 1010	042213 1010	VAS	SM (20) 2510B			

Microbac Laboratories, Inc., Baltimore Division

Mark B. Horan, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Exponent	Project: General Analysis	Report: 13D1376
4901 Telsa Drvie Suite L	Project Number: FPRF Response, 1205174.000	Reported: 04/23/2013 13:38
Bowie, MD 20715	Project Manager: Ben Cotts	

Project Requested Certification(s):

State of Pennsylvania (NELAC)

Analyte Certification Exception Summary

No certification exceptions

All analysis performed were analyzed under the required certification unless otherwise noted in the above summary.

Certification List

Below is a list of certifications maintained by Microbac Laboratories, Inc. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. A complete list of individual analytes pursuant to each certification below is available upon request.

Code	Description	Certification Number	Expires						
Microbac La	boratories, Inc., Baltimore Division								
A2LA1	A2LA (Biology)	410.02	04/30/2013						
A2LA2	A2LA (Environmental)	410.01	04/30/2013						
VA-B	Commonwealth of Virginia (NELAC) - Baltimore	460170-1829	06/14/2013						
CPSC	CPSC Testing of Childrens Products and Jewelry	1115	04/30/2013						
Pb	Environmental Lead (ELLAP)	410.01	04/30/2013						
NJ	New Jersey	NLC120001	06/30/2013						
MD	State of Maryland (Drinking Water)	109	06/30/2013						
PA	State of Pennsylvania (NELAC)	68-00339	08/31/2013						
USDA	US Department of Agriculture	P330-09-00021	02/19/2012						
WV	West Virginia	054	08/31/2013						
Microbac La	Microbac Laboratories, Inc., Richmond Division								
VA-R	Commonwealth of Virginia (NELAC) - Richmond	460022-1834	06/14/2013						

Microbac Laboratories, Inc., Baltimore Division

Mark B. Horan, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Exponent	Project: General Analysis	Report: 13D1376
4901 Telsa Drvie Suite L	Project Number: FPRF Response, 1205174.000	Reported: 04/23/2013 13:38
Bowie, MD 20715	Project Manager: Ben Cotts	

Qualifiers/Notes and Definitions

General Definitions:

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Page 5 of 7

Baltimore Division 2101 Van Deman Street • Baltimore, MD 21224 Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

Cooler Receipt Log

Cooler ID: Default Cooler		Cooler Temp: 23.20 °C Work Order: 13D1376
Custody Seals Intact:	Yes	COC/Containers Agree: Yes
Containers Intact:	Yes	Correct Preservation: Yes
Received On Ice:	Yes	Correct Number of Containers Received: Yes
Radiation Scan Acceptable:	Yes	Sufficient Sample Volume for Testing: Yes
COC Present:	Yes	Samples Received in Proper Condition: Yes

Comments:

Microbac		man 3)-633)-633	St, Ba 3-180 3-655	altim 0	ore, MD 2122				/ Re	eco	rd	In	structic	ons for	comple	ting the C	hain of Custody		ack.
Customer	www.microba			ject M	lanager				Tu	rn Aro	und Tim	e	_ C	omplia	nce		QC Level	(_
Name: Benjamin Cotts Address: 17000 Science Drive Bowie, MD 20715 Project Information	e, Suite 200		F	Vame Phone Email npler	(201) 201	-2515	.com		Nee	Normal	$\mathbf{\tilde{\mathbf{v}}}$	RUSH*		Yes	•	No	 I II** III** IV** 		
Name: FPRF Response Number: 1205174.000			r P	Name Name None ID:**	:				✓	EDD Email Fax	ablu			nent.	com			13D1376	
	Matrix****	Grab	Composite	Filtered	Date Collected	Time Collected	No. of Containers	Water Conductivity		R	tequest	ed Ana	lysis						
Client Sample ID Control Water Sample	2	0	U U	L III	03/27/13			≤ √	-	-			+				Comn	nents	
		-	┢		03/21/13	15.00	-	۴	┢─	-	\vdash	+	+	+					
		-	-	-				┝─			\vdash		+-		╉─┤				
		-	-	-					┢	┝	\vdash	+	_	+	$ \vdash $				
		┢─	┢─		{		-	┢		┢	\vdash	+	_	+					
		┢	\mathbf{h}					┝─		┢	┝─┼╴		+	+					
		\vdash						-	\vdash		\vdash	+	+-	+					
		\vdash	+		1		1			+	\vdash	+	+	+				an terrest for an an a second	
		┢		1	1				\vdash		\vdash	+	+	+					
		A REAL PROPERTY AND A REAL	Hazar	dous	Radioactiv	e S	ample D	Dispo	sition	0)ispose a	as app	ropriate		Return	O Arct	hive		
Number of Containers:	Sampled By (s		*****		Printed Name/Affi	and the state scatter, the second of	CONTRACTOR OF STREET, STOR	and a serie of the series	/Time	Personal and a second second			d By (signat	ure)		Printed Name/Affi	iation	
Cooler Number: Temp upon receipt(°C): 23,2	Relinquished F	in att			Benjamin Co Printed Name/Affi								ld	9	$\langle \rangle$				
Sample Received on Ice or	K	ag	PV	e)	Finited NamerAm	nation			/Time		22	D V	d By		ureį	0	Printed Name/Affil		MU
	Relinquished E	By (sig	natur	e)	Printed Name/Affi	liation		1	/ // /Time			eceive	d for L	ab By	(signa	ture)	Printed Name Affil		MU
Radiation Scan Acceptable Yes MNo																	00		
* Please notify lab prior to drop off. ** Surcharge May Apply to add'l QC Pac	kages	*** S	Sample	er cert	WHITE ification ID need	- ORIGINAL ded for some			LOW	/ - RE(CEIPT					Page	9 1 of	2	rev.121112

**** Matrix Types: Air(A), Childrens Product(CP), Food(F), Paint(P), Soil/Solid (S), Oil(O), Wipe(WI), Drinking Water (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify)

Page 7 of 7

318 South Bracken Lane • Chandler, Arizona 85224

MATERIALS CHARACTERIZATION REPORT

Report No.:	1304.17	Date:	April 15, 2013
Customer:	Elizabeth Keller Exponent 17000 Science Drive Bowie, MD 20715		
Customer P.O.:	1205174		
Samples:	Three Aqueous Samples		
	 Control 3/27/13 Test 3 3/28/13 Test 6 4/3/13 		
Objective	Determine and Compare the pH 7	Fotal Organic Total	Inorganic Carbon

Objective: Determine and Compare the pH, Total Organic, Total Inorganic Carbon, Chloride, Fluoride and the Metals Concentrations of the Three Aqueous Solutions

SUMMARY

The pH and elemental analysis results found for the three aqueous solutions are listed in the Summary Table.

Summary Table

Flow out / A const	Con	centration (p	opm)
Element/Assay	Control	Test 3	Test 6
рН	7.82	6.18	7.31
Total Organic C	1.3	150	360
Total Inorganic C	7.3	7.7	21
Chloride	34	143	60
Fluoride	0.7	27	33
Li	< 0.005	0.25	3.60
Р	< 1.0	7.5	11
Ca	23	72	42
Na	13	19	17
Mg	4.8	6.9	7.0
K	2.4	6.0	4.8
Sr	0.08	4.5	0.44
AI	0.01	3.0	1.0
Fe	0.09	0.72	0.17
Ва	0.02	0.61	0.27
В	0.01	0.05	1.8
Zn	< 0.005	29.0	2.7
Mn	< 0.005	0.27	4.6
Sb	< 0.002	0.70	0.70
Ni	< 0.010	0.05	0.69
Со	< 0.005	0.02	0.76
Cu	< 0.005	0.15	0.14
As	< 0.010	< 0.010	< 0.010
v	< 0.002	0.002	0.003

The majority of elemental concentrations have been rounded to two significant figures to simplify the comparison. All solids were filtered from the solution before analyses of the filtrate. And are not included these results.

The elements are grouped as carbon, chloride/fluoride anion (not total Cl/F), lithium/phosphorus and roughly descending amounts of the metals.

Only the Test 3 solution exhibits a slightly acidic pH (6.2) value. While it is possible that the low levels of chloride (143 ppm) and fluoride (27 ppm) might have been initially present as HCl and

INTRODUCTION

Three aqueous samples, identified as Control 3/27/13, Test 3 3/28/13 and Test 6 4/3/13, were received from E Keller on April 9th.

The objective is to determine and compare the pH, total organic, total inorganic carbon, chloride, fluoride and the metals concentrations of the three aqueous solutions.

ANALYSIS

Sample Preparation. The samples were delivered in glass bottles. The Control is clear, colorless solution while Test 3 and Test 6 have a significant loading of dark particulates. All samples were filtered prior to analyses.

pH. Measurements for pH were obtained with a Fisher Scientific Accumet Excel XL15 pH meter. Samples were filtered prior to analysis. Samples were then stirred for at least one minute before the measurement. A 7.00 pH buffer standard was measured with the samples. A value of 6.99 was obtained. The pH results are listed in the Summary Table.

Ion Chromatography (IC). IC is a very effective and sensitive method for the screening and routine analysis of many cations and anions in aqueous solutions. This well-known liquid chromatographic technique separates analytes according to their affinity for the separation column packed with an ion-exchange resin of low capacity. During the analysis, the effluent from the separation column is passed through a suppressor column to neutralize the counter-ions of the eluent and thus lower its conductivity. With the high background conductivity reduced, the sample ions are detected with high sensitivity (ppb range) using conductivity detection. The separated ions are identified qualitatively based on their relative retention times within the column and quantitatively through integration of signal intensity, which is proportional to the analyte concentration.

Instrumentation. All analyses were performed in duplicate using a Dionex ICS-2000 Ion Chromatograph under the following conditions:

Anions:	Column:	IonPac [®] AS9-HC + IonPac [®] AG9-HC
	Eluent:	9.0 mM Sodium carbonate
	Flow rate:	1.0 mL/min
	Detection:	Suppressed Conductivity ASRS [®] 300,
		AutoSuppression TM Recycle Mode
	Injection volume:	250 μL

Samples were diluted 2X to nearly 1000X with deionized water. A 0.2530 ppm anion standard run with the samples and met quality control parameters of $\pm 10\%$ (100-106% recovery). All individual chromatograms are collected in the IC Appendix. The sample data is collected in Table I and the final results listed in the Summary Table.

Run 1	Run 2	Average	Dilution	Total (ppm)
0.3287	0.3352	0.3320	2.060	0.6838
0.1703	0.1741	0.1722	199.6	34.37
0.2748	0.2713	0.2731	98.27	26.83
0.1510	0.1570	0.1540	930.7	143.3
0.3707	0.3701	0.3704	88.46	32.76
0.0758	0.0713	0.0736	813.4	59.83
	0.3287 0.1703 0.2748 0.1510 0.3707	0.3287 0.3352 0.1703 0.1741 0.2748 0.2713 0.1510 0.1570 0.3707 0.3701	0.3287 0.3352 0.3320 0.1703 0.1741 0.1722 0.2748 0.2713 0.2731 0.1510 0.1570 0.1540 0.3707 0.3701 0.3704	0.3287 0.3352 0.3320 2.060 0.1703 0.1741 0.1722 199.6 0.2748 0.2713 0.2731 98.27 0.1510 0.1570 0.1540 930.7 0.3707 0.3701 0.3704 88.46

Table I –	Sample Da	ta Analyses
IUNICI	Sumple Du	tu munu y beb

Elemental Analyses. The ICP-MS/AES survey and total organic and inorganic carbon were performed by AnalysisNow! (Chandler, AZ). All samples were filtered prior to analysis. The

The AnalysisNow! reports are included in the Elemental Analysis Appendix.

The concentrations of only the detected elements expressed in ppm are listed in the Summary Table. No detectable amounts (> 0.002 to 0.010 ppm) of the following elements were present in any of the samples: Be, Ti, Cr, Ga, Ge, Zr, Nb, Mo, Ag, Cd, Sn, Ta, W, Au, Tl, Pb, Bi, Th and U.

As questions arise during your review of this report, please do not hesitate to call us.

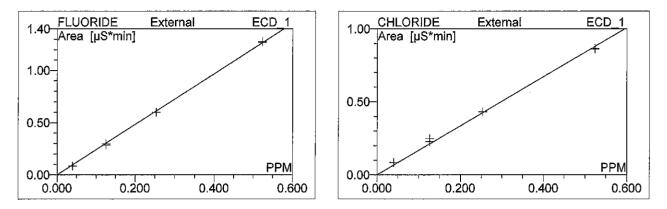
ANALYZE Inc.

David De La Cruz Consulting Chemist & Operations Manager

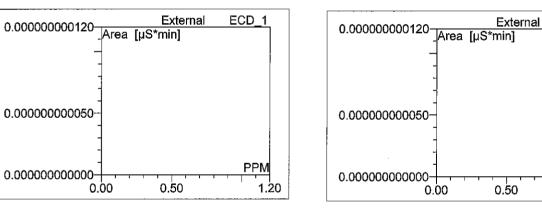
Henen J. Valent

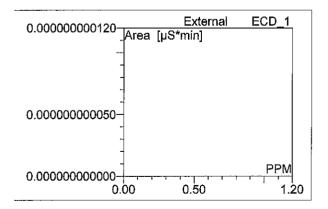
Steven J. Valenty, Ph.D. Consulting Chemist & President

APPENDIX

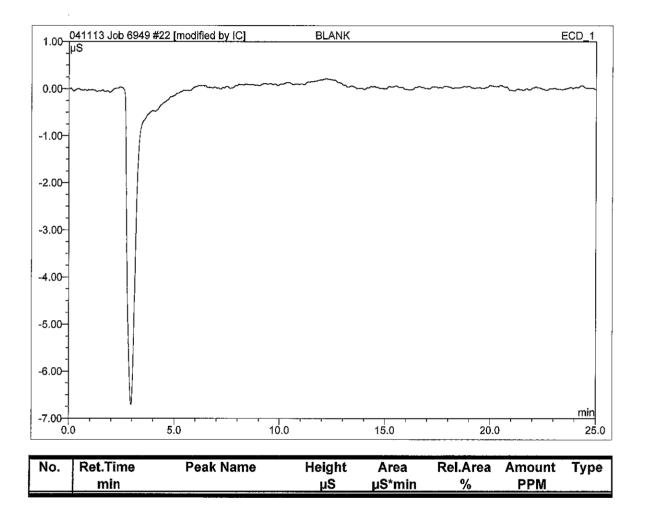

Ion Chromatography

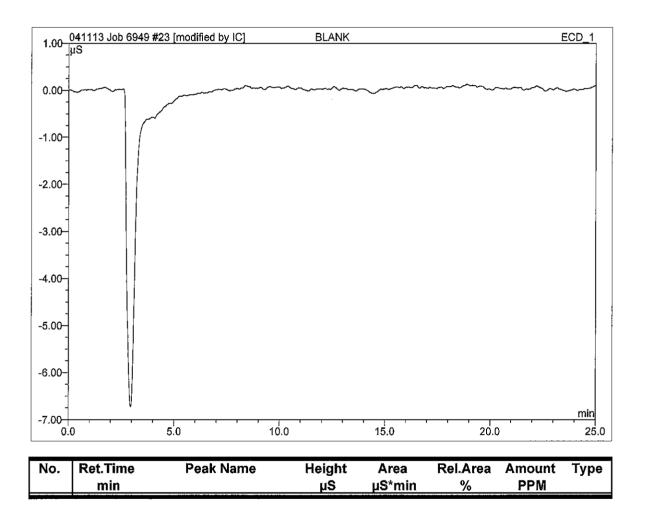
ECD_1


PPM

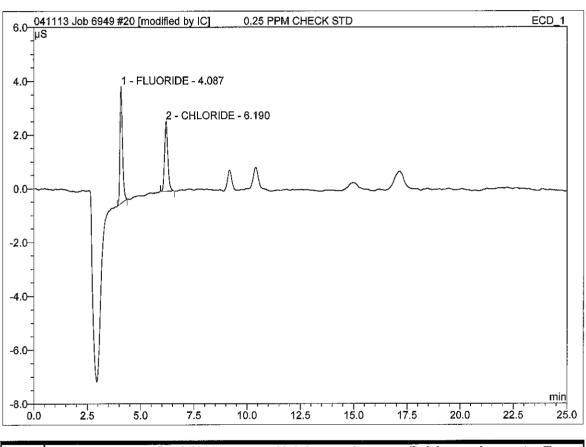

1.20

CALIBRATION CURVES


No.	Ret.Time	Peak Name	Cal.Type	Points	Corr.Coeff.	Offset	Slope	Curve
	min				%			
1	4.08	FLUORIDE	Lin	- 8	99.9926	0.0000	2.4233	0.0000
2	6.19	CHLORIDE	Lin	8	99.9627	0.0000	1.6806	0.0000
Average:					99.9777	0.0000	2.0520	0.0000

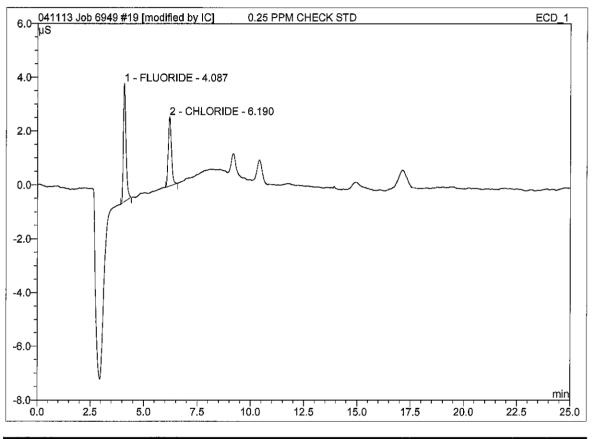

22 BLANK

Sample Name:	BLANK	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	blank	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 9:43	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000



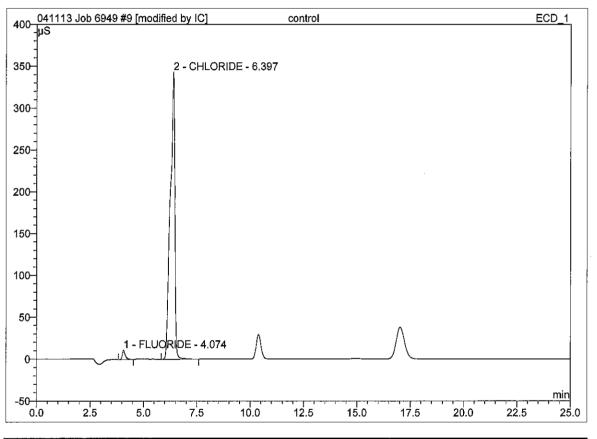
23 BLANK

Sample Name:	BLANK	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	blank	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 10:11	Sample Weight:	1.0000
Run Time (min):	25.00	Sample Amount:	1.0000


20 0.25 PPM CHECK STD Injection Volume: 250.0 Sample Name: 0.25 PPM CHECK STD ECD_1 Channel: Vial Number: 0 Sample Type: Wavelength: n.a. unknown Control Program: Anions 2000 Bandwidth: n.a. Anions 2000 Dilution Factor: 1.0000 Quantif. Method: 1.0000 4/11/2013 20:44 Sample Weight: Recording Time: Run Time (min): Sample Amount: 1.0000 25.00

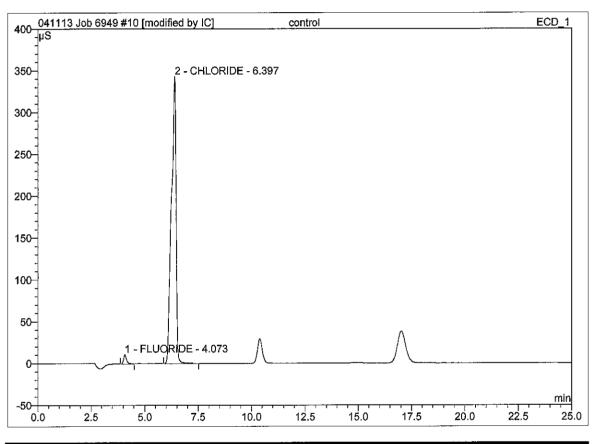
No.	Ret.Time min	Peak Name	Height uS	Area uS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	4.360	0.604	56.84	0.2492	BMB*
2	6.19	CHLORIDE	2.604	0.459	43.16	0.2729	BMB*

19 0.25 PPM CHECK STD


Sample Name:	0.25 PPM CHECK STD	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a. ¯
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/11/2013 20:17	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

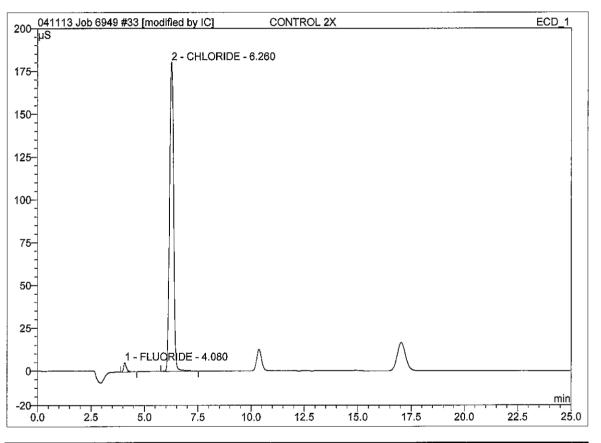
No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	4.401	0.625	58.64	0.2578	BMB*
2	6.19	CHLORIDE	2.571	0.441	41.36	0.2622	BMB

9 control


Sample Name:	control	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/11/2013 16:37	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

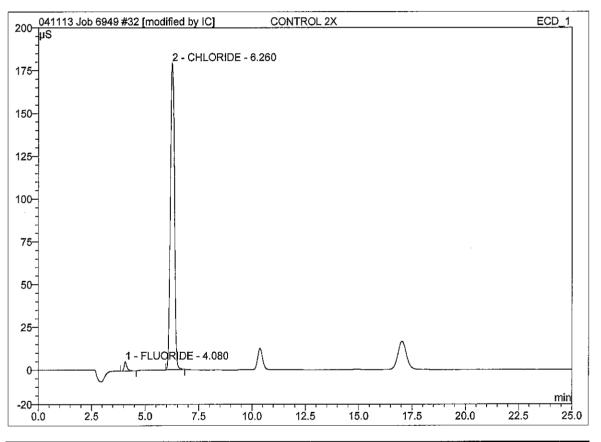
No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.07	FLUORIDE	11.065	1.743	1.98	0.7192	BMB*
2	6.40	CHLORIDE	342.929	86.185	98.02	51.2828	BMB

10 control

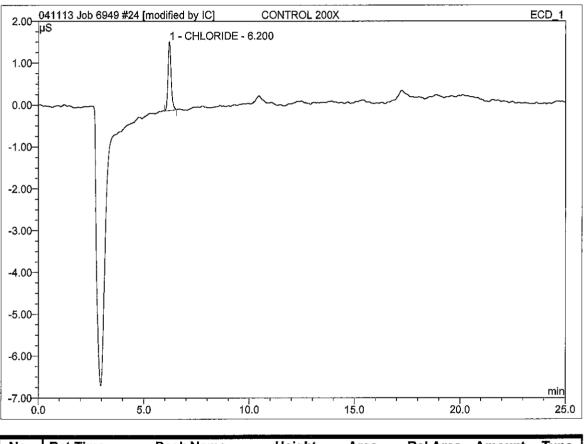

Sample Name:	control	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:		Dilution Factor:	1.0000
	4/11/2013 17:05	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.07	FLUORIDE	11.039	1.733	1.97	0.7151	BMB*
2	6.40	CHLORIDE	342.904	86.315	98.03	51.3603	BMB*

33 CONTROL 2X

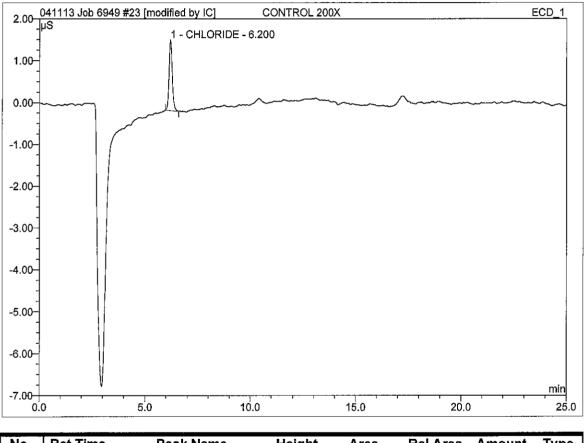

Sample Name:	CONTROL 2X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
•	4/12/2013 15:39	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.08	FLUORIDE	5.383	0.812	2.02	0.3352	BMB*
2	6.26	CHLORIDE	180.370	39.409	97.98	23.4498	BMB*


32 CONTROL 2X

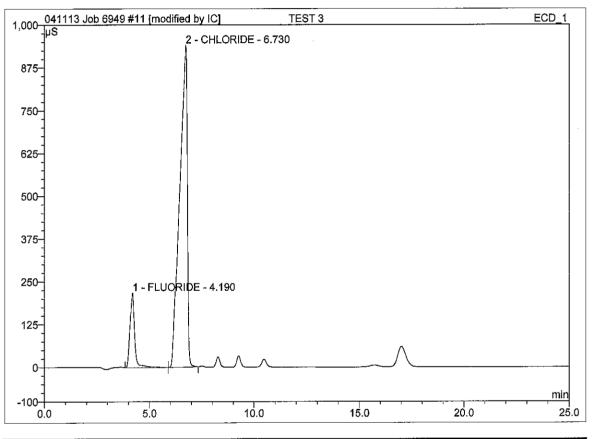
Sample Name:	CONTROL 2X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 15:12	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.08	FLUORIDE	5.370	0.796	2.00	0.3287	BMB*
2	6.26	CHLORIDE	178.936	38.963	98.00	23.1841	BMB*


24 CONTROL 200X Injection Volume: 250.0 Sample Name: **CONTROL 200X** Vial Number: 0 Channel: ECD_1 Wavelength: Sample Type: unknown n.a. Control Program: Anions 2000 Bandwidth: n.a. Quantif. Method: Dilution Factor: 1.0000 Anions 2000 Recording Time: 4/12/2013 10:38 Sample Weight: 1.0000 Run Time (min): 25.00 Sample Amount: 1.0000

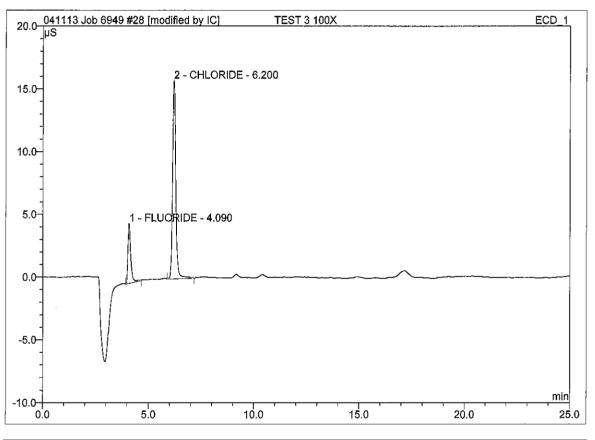
No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		<u>µə</u>	<u>µS*min</u>	%	PPM	
1	6.20	CHLORIDE	1.641	0.286	100.00	0.1703	BMB
1	6.20	CHLORIDE	1.641	0.286	100.00	0.1703	

23 CONTROL 200X


Sample Name:	CONTROL 200X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 11:05	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

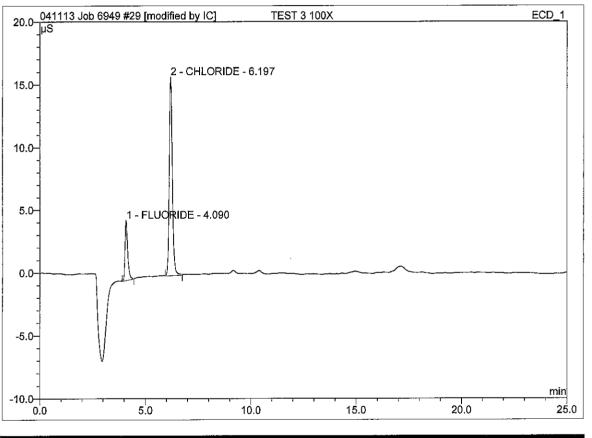
No	. R	et.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
	1	6.20	CHLORIDE	1.674	0.293	100.00	0.1741	BMB*

11 TEST 3


Sample Name:	TEST 3	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
-	Anions 2000	Dilution Factor:	1.0000
	4/11/2013 17:32	Sample Weight:	1.0000
Run Time (min):	25.00	Sample Amount:	1.0000

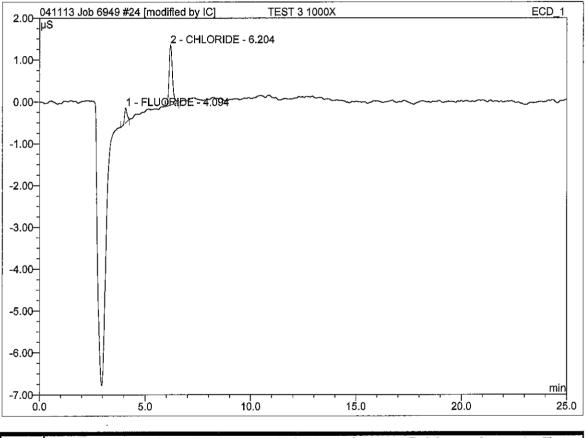
No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.19	FLUORIDE	216.799	54.832	12.24	22.6266	BMB*
2	6.73	CHLORIDE	939.147	393.218	87.76	233.9767	BMB*

28 TEST 3 100X

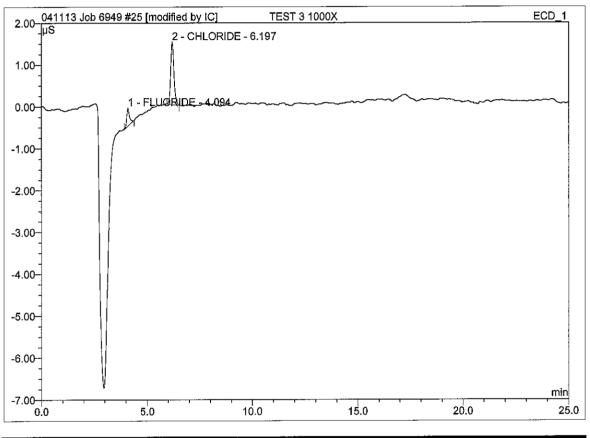

Sample Name:	TEST 3 100X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 13:22	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	4.720	0.666	19.74	0.2748	BMB*
2	6.20	CHLORIDE	15.768	2.708	80.26	1.6112	BMB*

29 TEST 3 100X

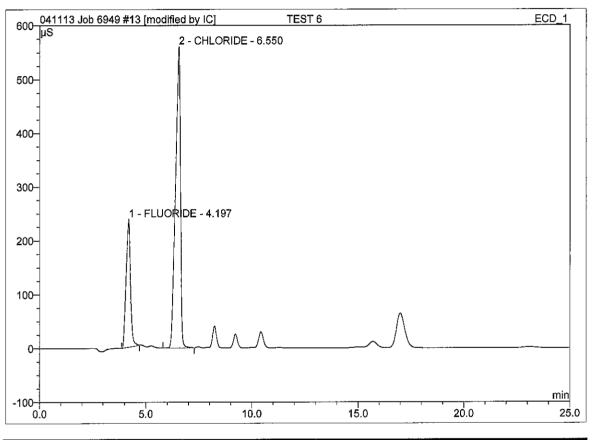

Sample Name:	TEST 3 100X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
	4/12/2013 13:50	Sample Weight:	1.0000
Run Time (min):	25.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height uS	Area uS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	<u>4.734</u>	0.657	19.83	0.2713	BMB
2	6.20	CHLORIDE	15.790	2.658	80.17	1.5816	BMB


24 TEST 3 1000X

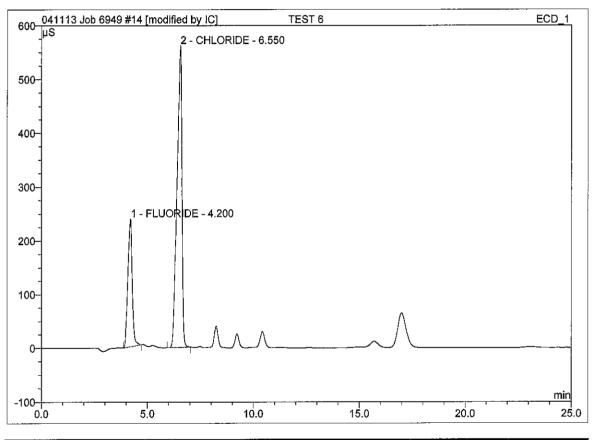
Sample Name:	TEST 3 1000X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:		Dilution Factor:	1.0000
	4/12/2013 11:33	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	µS*min	%	PPM	
1	4.09	FLUORIDE	0.354	0.047	15.58	0.0193	BMB*
2	6.20	CHLORIDE	1.419	0.254	84.42	0.1510	BMB*


25 TEST 3 1000X Injection Volume: 250.0 Sample Name: **TEST 3 1000X** Vial Number: Channel: ECD_1 0 Wavelength: n.a. Sample Type: unknown Bandwidth: n.a. Control Program: Anions 2000 Dilution Factor: 1.0000 Quantif. Method: Anions 2000 Recording Time: 4/12/2013 12:00 Sample Weight: 1.0000 Run Time (min): 25.00 Sample Amount: 1.0000

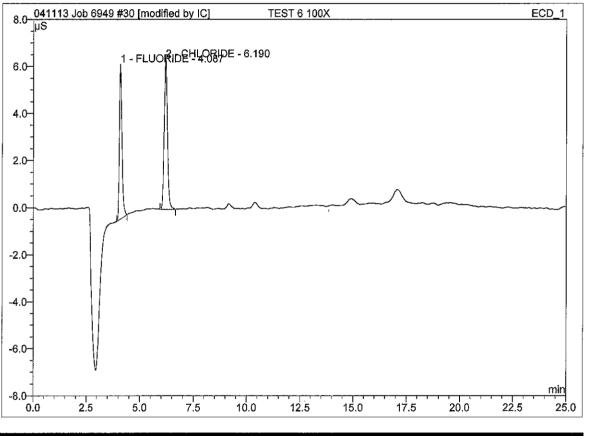
No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	0.424	0.062	18.97	0.0255	BMB*
2	6.20	CHLORIDE	1.486	0.264	81.03	0.1570	BMB*

13 TEST 6


Sample Name:	TEST 6	Injection Volume:	250.0
, Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
•	4/11/2013 18:27	Sample Weight:	1.0000
Run Time (min):	25.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.20	FLUORIDE	237.064	56.168	27.23	23.1780	BMB*
2	6.55	CHLORIDE	559.984	150.088	7 2.77	89.3072	BMB*

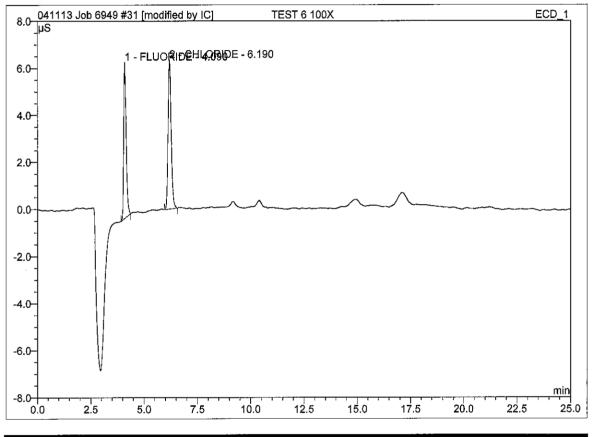
14 TEST 6


Sample Name:	TEST 6	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
•	4/11/2013 18:54	Sample Weight:	1.0000
Run Time (min):	25.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.20	FLUORIDE	237.323	56.093	27.30	23.1469	BMB*
2	6.55	CHLORIDE	560.460	149.357	72.70	88.8721	BMB*

30 TEST 6 100X

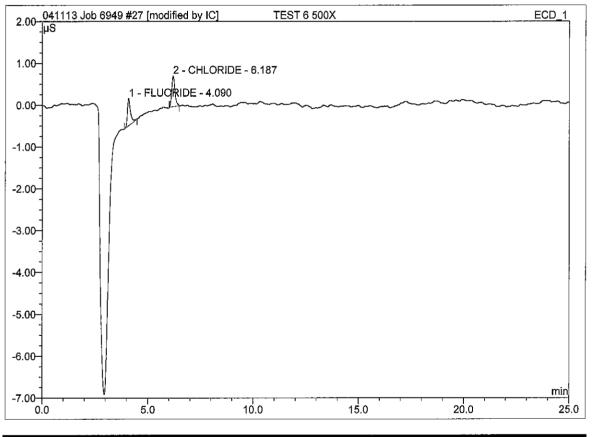
Sample Name:	TEST 6 100X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 14:17	Sample Weight:	1.0000
Run Time (min):	25.00	Sample Amount:	1.0000



No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	µS*min	%	РРМ	
1	4.09	FLUORIDE	6.567	0.898	45.04	0.3707	BMB
2	6.19	CHLORIDE	6.362	1.096	54.96	0.6522	BMB

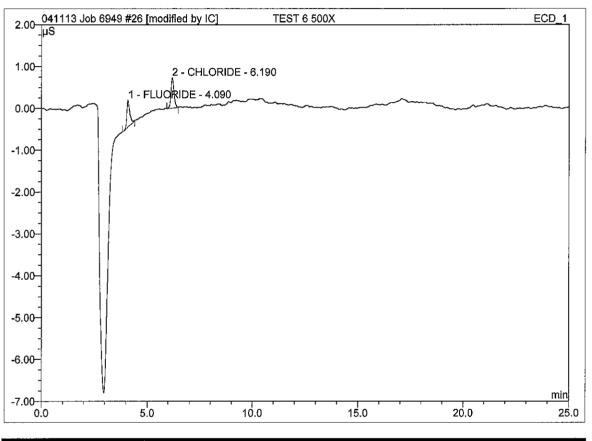
,

31 TEST 6 100X


Sample Name:	TEST 6 100X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:		Dilution Factor:	1.0000
Recording Time:		Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	6.626	0.897	45.53	0.3701	BMB*
2	6.19	CHLORIDE	6.323	1.073	54.47	0.6386	BMB*

27 TEST 6 500X


Sample Name:	TEST 6 500X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
•	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 12:55	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount PPM	Туре
1	4.09	FLUORIDE	0.648	0.104	44.87	0.0428	BMB
2	6.19	CHLORIDE	0.734	0.127	55.13	0.0758	BMB*

26 TEST 6 500X

Sample Name:	TEST 6 500X	Injection Volume:	250.0
Vial Number:	0	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	Anions 2000	Bandwidth:	n.a.
Quantif. Method:	Anions 2000	Dilution Factor:	1.0000
Recording Time:	4/12/2013 12:28	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	µS*min	%	PPM	
1	4.09	FLUORIDE	0.641	0.099	45.21	0.0408	BMB*
2	6.19	CHLORIDE	0.717	0.120	54.79	0.0713	BMB*

APPENDIX

Elemental Analyses

AnalysisNow!

3400 N. Arizona Ave. Suite 114 Chandier, AZ 85225

Phone: 480.892.1120 Fax: 480.892.1113 www.analysisnow.com

Customer:	ANALYZE		Sample Number:	42436	
Address:	318 S. Bracken Lane		Purchase Order:	3112-6949	
City:	Chandler		Sample Type:	Process Solution	
State:	AZ		Date/Time In:		
Zip:	85224	24 Date/Time Out:		04/15/2013 11:55 AN	
	E-mai	il transmis	ssion		
	Trace E	lements, p	ppb	<u> </u>	
	Li: <5	Zn: < 5	Ta:	< 2	
	Be: < 2	Ga: < 2	W :	< 5	
	B: 11	Ge: < 5	Au:	< 5	
	Mg: 4800	As: < 10	TI:	< 2	
	Al: 8.5	Sr: 82	Pb:	< 2	
	Ti: < 10	Zr: < 2	Bi:	< 2	
	V: <2	Nb: < 2	Th:	< 5	
	Cr: < 5	Mo: < 5	U:	< 5	
	Mn: < 5	Ag: < 5	Fe:	90	
	Ni: < 10	Cd: < 5	Na:	13000	
	Co: < 5	Sn: < 5	Ca:	23000	
	Cu: < 5	Sb: < 2	К:	2400	
		Ba: 24			

Comments: Control; 3/27/13; AFB P = <1.0ppm; TIC = 7.3ppm; TOC = 1.3ppm

(signature on file)

Kirsten B. Smith Laboratory Manager

AnalysisNow!

3400 N. Arizona Ave. Suite 114 Chandler, AZ 85225

Phone: 480.892.1120 Fax: 480.892.1113 www.analysisnow.com

ł

.

Customer	: ANALYZE	Sample N	lumber: 42437
Address:	318 S. Bracken Lane	Purchase	Order: 3112-6949
City:	Chandler	Sample T	ype: Process Solution
State:	AZ	Date/Tim	
Zip:	85224	Date/Tim	e Out: 04/15/2013 11:55 AN
	E-n	nail transmission	
	Trace	e Elements, ppb	
	Li : 250	Zn: 29000	Ta: < 2
	Be: < 2	Ga: < 2	W : <5
	B: 53	Ge: < 5	Au: < 5
	Mg: 6900	As: < 10	TI: < 2
	AI: 3000	Sr: 4500	Pb: < 2
	Ti : < 10	Zr: < 2	Bi: <2
	V: 2	Nb: < 2	Th: < 5
	Cr: < 5	Mo: < 5	U: < 5
	Mn: 2 70	Ag: < 5	Fe: 720
	Ni: 51	Cd: < 5	Na: 19000
	Co: 16	Sn: < 5	Ca: 72000
	Cu: 150	Sb: 700	K: 6000
		Ba: 610	

Comments: Test 3; 3/28/13; AFB P = 7.5ppm; TIC = 7.7ppm; TOC = 150ppm

> (signature on file) Kirsten B. Smith Laboratory Manager

AnalysisNow!

3400 N. Arizona Ave. Suite 114 Chandler, AZ 85225

Phone: 480.892.1120 Fax: 480.892.1113 www.analysisnow.com

Customer:	ANALYZE	Sample Num	ber: 4	2438
Address:	318 S. Bracken Lane	Purchase Or	der: 3	112-6949
City:	Chandler	Sample Type	: P	rocess Solution
State:	AZ	Date/Time In:	4	/11/2013 11:20:12 AI
Zip:	85224	Date/Time Ou	it:	04/15/2013 11:55 AI
	E-ma	ail transmission		
	Trace	Elements, ppb		
	Li: 3600	Zn: 2700	Ta: <	2
	Be: < 2	Ga: < 2	W: <	5
	B: 1800	Ge: < 5	Au: <	5
	Mg: 7000	As: < 10	TI: <	2
	AI: 1000	Sr: 440	Pb: <	2
	Ti: < 10	Zr: 2	Bi: <	2
	V: 2.9	Nb: < 2	Th: <	5
	Cr: < 5	Mo: 5	U: <	5
	Mn: 4600	Ag: < 5	Fe:	170
	Ni: 690	Cd: < 5	Na:	17000
	Co: 760	Sn: < 5	Ca:	42000
	Cu: 140	Sb: 700	K:	4800
		Ba: 270		

Comments: Test 6; 4/3/13; AFB P = 11ppm; TIC = 21ppm; TOC = 360ppm

> (signature on file) Kirsten B. Smith Laboratory Manager

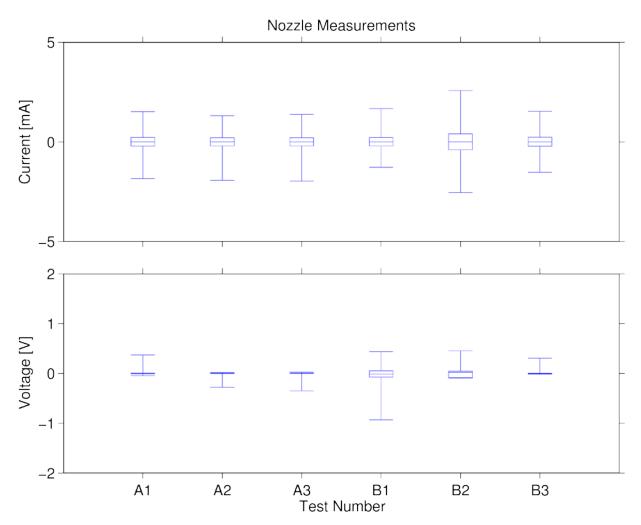


Figure E.1 Box plot indicating the maximum, minimum, median, first quartile and third quartile measurement for nozzle voltage and current measurements

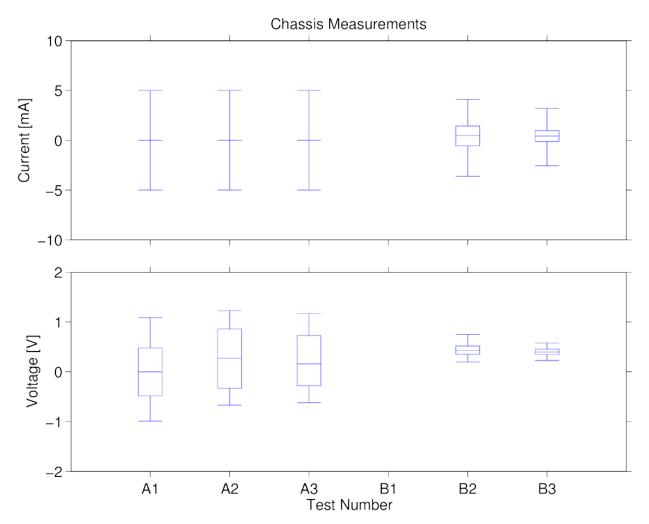


Figure E.2 Box plot indicating the maximum, minimum, median, first quartile and third quartile measurement for chassis voltage and current measurements

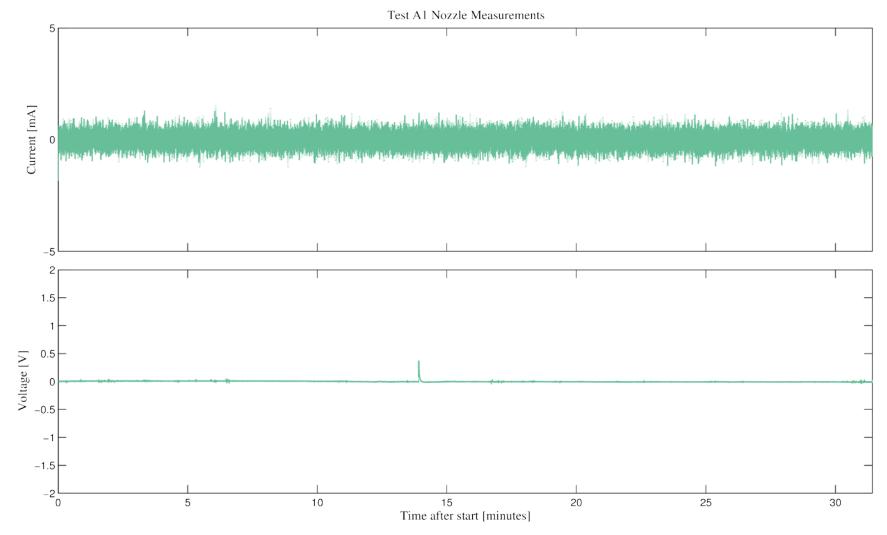


Figure E.3 Nozzle voltage and current measurements for Test A1

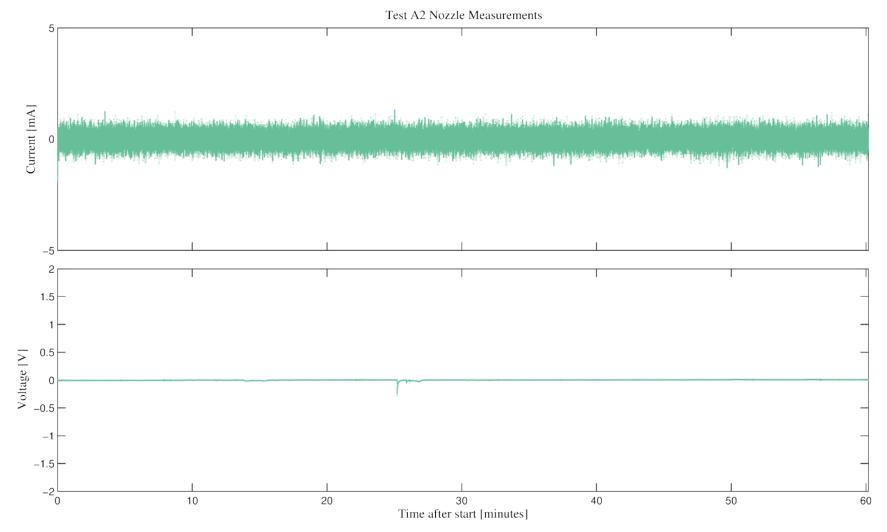


Figure E.4 Nozzle voltage and current measurements for Test A2

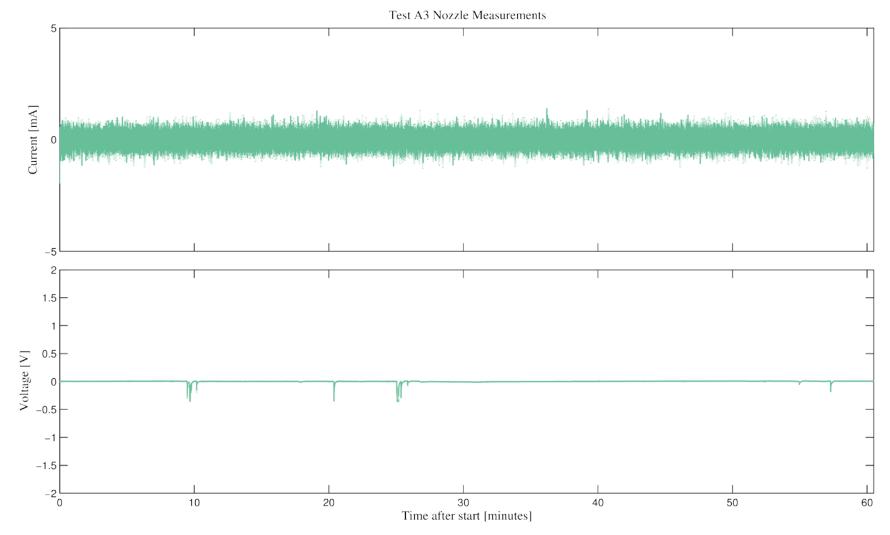


Figure E.5 Nozzle voltage and current measurements for Test A3

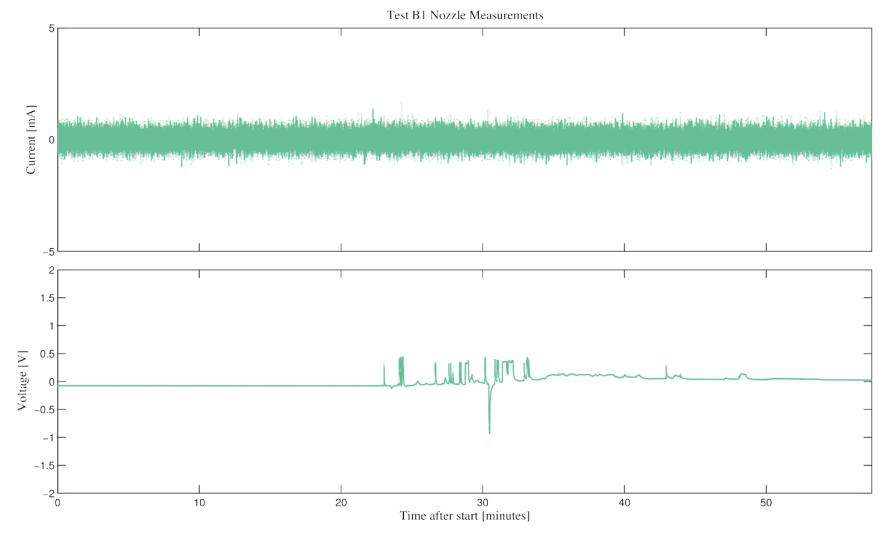


Figure E.6 Nozzle voltage and current measurements for Test B1

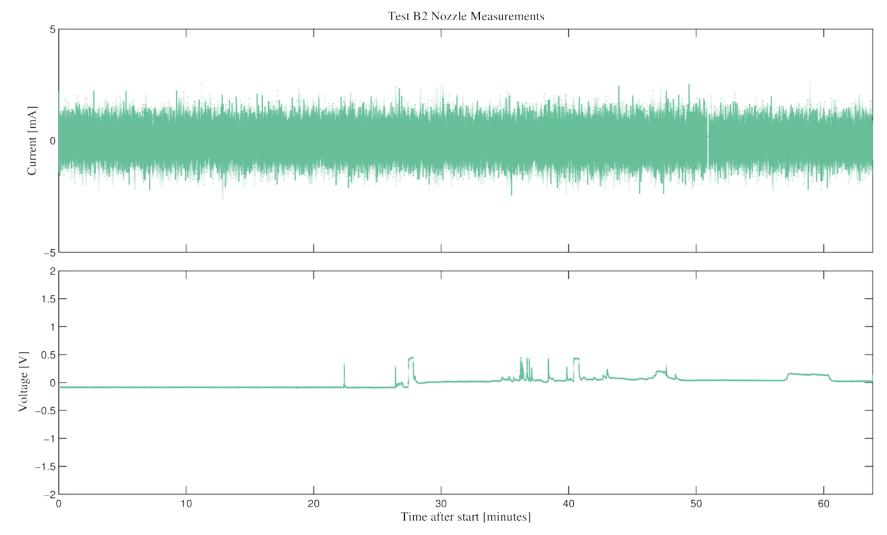


Figure E.7 Nozzle voltage and current measurements for Test B2

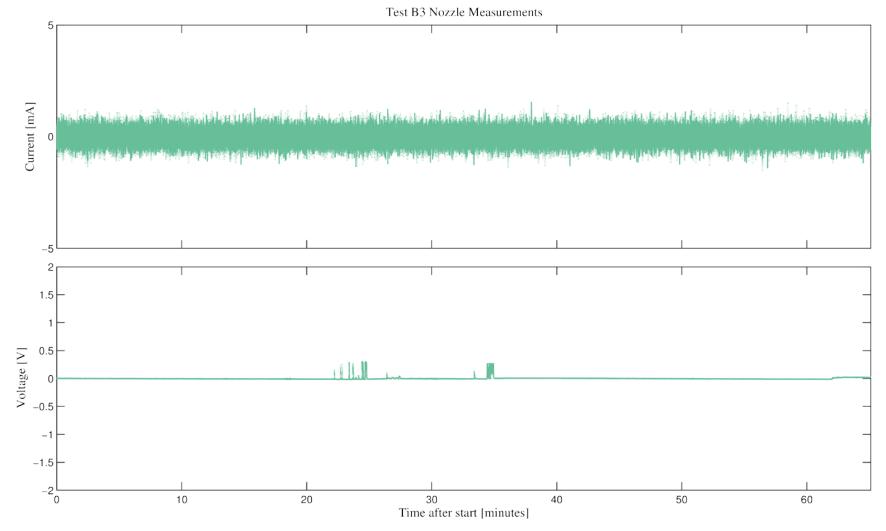


Figure E.8 Nozzle voltage and current measurements for Test B3

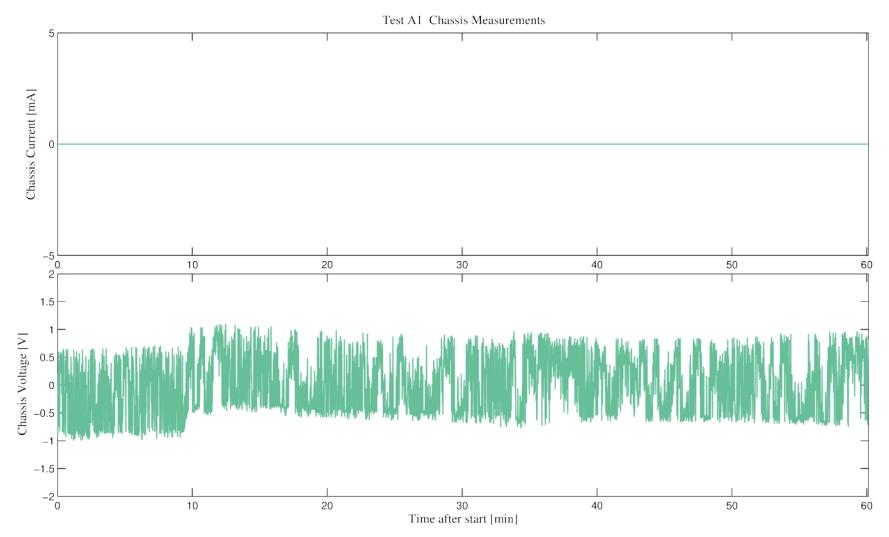


Figure E.9 Chassis voltage and current measurements for Test A1

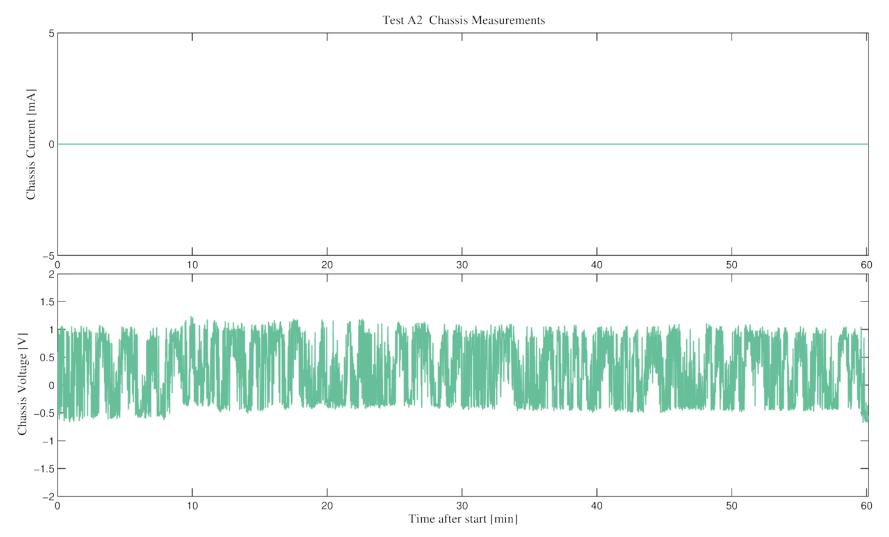


Figure E.10 Chassis voltage and current measurements for Test A2

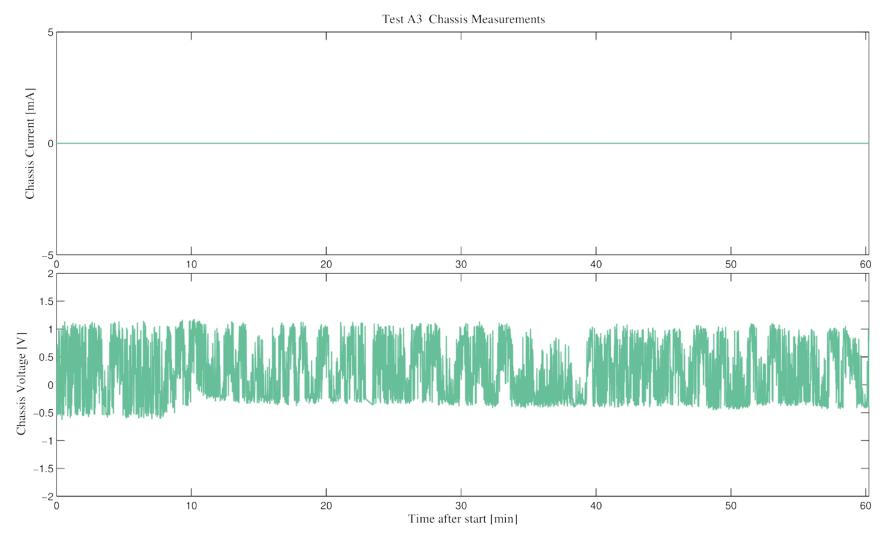


Figure E.11 Chassis voltage and current measurements for Test A3

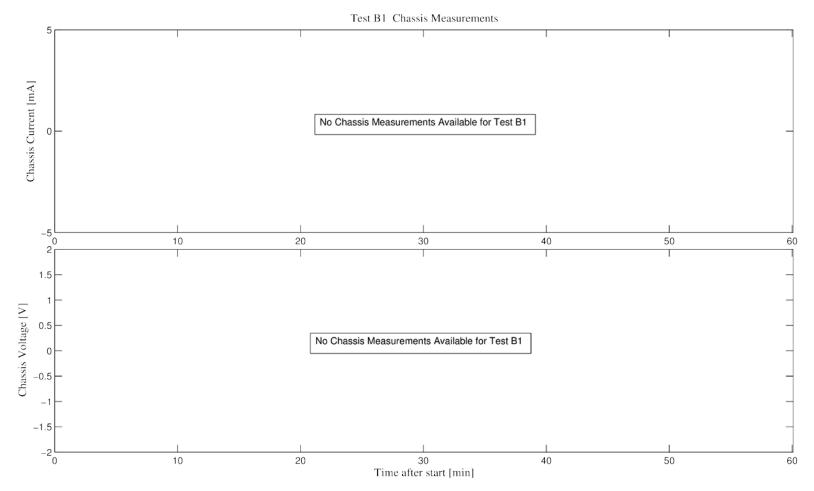


Figure E.12 Chassis voltage and current measurements for Test B1

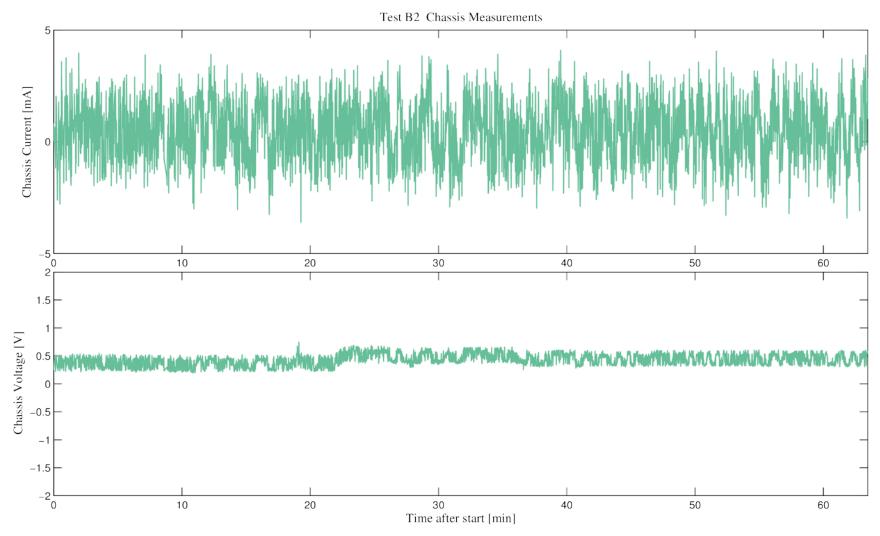


Figure E.13 Chassis voltage and current measurements for Test B2

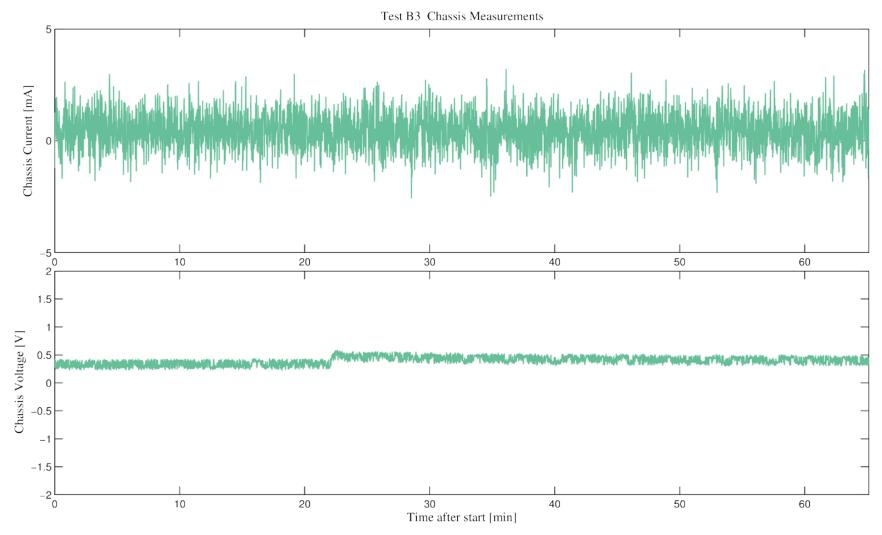


Figure E.14 Chassis voltage and current measurements for Test B3